

Les signaux physiques et leurs spectres

Physique PCSI1 — François Crépin

Exemples de signaux

On appelle signal toute grandeur physique dépendant du temps ...

Températures et précipitations (hauteur) à Paris en 2016

Source: www.meteofrance.com

Exemples de signaux

On appelle signal toute grandeur physique dépendant du temps ...

Puissance électrique demandée en France (09/09/2020)

Source: http://clients.rte-france.com/lang/fr/visiteurs/vie/courbes.jsp

Conversion des signaux

Conversion des signaux et transmission

Conversion des signaux

Conversion des signaux et transmission

EXEMPLE : Transmission numérique.

Complexité des signaux

Complexité des signaux	
Signaux purs	Signaux complexes
Signaux sinusoïdaux	Signaux périodiques non-sinusoïdaux
	Signaux non-périodiques

Signaux acoustiques

Diapason La₃ (f = 440 Hz)

Guitare Si₂ (f = 247 Hz)

Signaux acoustiques

Bruit d'un froissement de papier

Signaux mécaniques

Hauteur d'eau dans le port de Brest, Juillet 2016

Données issues du service hydrographique et océanographique de la marine (SHOM)

Signaux mécaniques

Hauteur d'eau dans le port de Brest, Aout 2015 — Mars 2016

Données issues du service hydrographique et océanographique de la marine (SHOM)

Signaux mécaniques

Hauteur d'eau dans le port de Seattle, Juillet 2017

Données issues du National Oceanic and Atmospheric Administration (NOAA)

Signaux thermodynamiques

Relevés de concentration dans une carotte de glace de Vostok, et déduction de la température atmosphérique

$$s(t) = \sum_{i} A_{i} \cos\left(2\pi f_{i}t + \varphi_{i}\right)$$
(1)
$$TURE$$

V

- Réaliser l'**analyse spectrale** d'un signal consiste à déterminer :
 - les fréquences f_i contenues dans le signal,
 - les amplitudes A_i des composantes sinusoïdales,
 - les phases φ_i .
- Le spectre du signal est l'ensemble $\{f_0, f_1, f_2, ...\}$ des fréquences contenues dans le signal. Cet ensemble peut être fini ou infini.

• On représente les A_i en fonctions des f_i sur le **spectrogramme d'amplitude** et les φ_i en fonctions des f_i sur le **spectrogramme de phase.**

L'analyse spectrale en pratique

Exemple : analyse du signal d'une guitare

L'analyse spectrale en pratique

Exemple : analyse du signal d'une guitare

• On retiendra le lien entre l'**extension temporelle** τ du signal et la **largeur** Δf **des pics de fréquences** dans son spectrogramme d'amplitude :

$$2\pi\Delta f \times \tau \simeq 1$$
.

• Plus le signal est large en temps, plus les pics en fréquence sont fins. Plus le signal est étroit en temps, plus les pics en fréquence sont larges.

• Pour avoir une bonne résolution, la largeur Δf d'un pic doit être très inférieure à la distance entre deux pics successifs. Ici $\Delta f \ll f_s$ avec f_s la fréquence du signal, ou $\tau \gg T$, avec $T = 1/f_s$ la période. Pour avoir une bonne résolution il convient d'enregistrer le signal sur un assez grand nombre de périodes.

L'analyse spectrale en pratique

Exemple : analyse du signal d'une guitare ----- échantillonnage

Fréquence d'échantillonnage $f_e = 44 \,\mathrm{kHz}$

Fréquence max dans le spectre

Temps d'acquisition T_a du signal

Les pics dans le spectre sont régulièrement espacés de $\Delta f = 1/T_a$

EXEMPLE : Le spectre de marée.

L'analyse spectrale du signal h(t) de la FIGURE 3 révèle le spectre suivant. C'est le spectre de marée dans le port de Brest.

FIGURE 5: La marée dans le port de Brest et son spectrogramme d'amplitude.

Spectre : { f_0 , f_1 , f_2 , f_3 , f_4 , f_5 , f_6 } = {0, 0.930, 0.966, 1.003, 1.896, 1.932, 2, 2.005, 3.865} en jour⁻¹

Quelques composantes

Quelques composantes

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right) \, .$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral **analysis Svas Cose Sing the Black** man-Tukey method (calculations were performed with the Analyseries software⁴⁷): **a**, isotopic temperature; **b**, dust; **c**, sodium; **d**, δ¹⁸O_{atm}; **e**, CO₂; and **f**, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

Macmillan Magazines Ltd

NATURE VOL 399 3 JUNE 1999 www.nature.com

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral **all sets Svas coe sing the Blackman-Tukey** method (calculations were performed with the Analyseries software⁴⁷): **a**, isotopic temperature; **b**, dust; **c**, sodium; **d**, δ¹⁸O_{atm}; **e**, CO₂; and **f**, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

• Macmillan Magazines Ltd (t) = SOUTURE |VOL 399|3 JUNE 1999| www.nature.com

 $f_0 = 0 j^{-1}$ valeur moyenne

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral **Constants Sector Sing the Black** man-Tukey method (calculations were performed with the Analyseries software⁴⁷): **a**, isotopic temperature; **b**, dust; **c**, sodium; **d**, δ¹⁸O_{atm}; **e**, CO₂; and **f**, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

• Macmillan Magazines Ltd (t) = SNATURE |VOL 399|3 JUNE 1999| www.nature.com

 $f_0 = 0 j^{-1}$ $f_5 = 1,932 j^{-1}$

deux marées par jour environ (période 12h25min)

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral and the analysis Swas and the Blackman-Tukey method (calculations were performed with the Analyseries software⁴⁷): a, isotopic temperature; b, dust; c, sodium; d, δ¹⁸O_{atm}; e, CO₂; and f, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

• Macmillan Magazines Ltd (t) = Starturs yot 396 JUNE 1999 | www.nature.com

 $f_0 = 0 j^{-1} \qquad f_5 = 1,932 j^{-1} \qquad f_6 = 2 j^{-1}$

Battements (période 14 j environ)

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral **Construction Construction Construction**

• Macmillan Magazines Ltd (t) = Statters your 3963 + 10 + 3999 | www.nature.com

 $f_0 = 0 j^{-1}$ $f_5 = 1,932 j^{-1}$ $f_6 = 2 j^{-1}$ $f_3 = 1,003 j^{-1}$

variation journalière (période 24h environ)

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral and the analysis was done sing the Blackman-Tukey method (calculations were performed with the Analyseries software⁴⁷): a, isotopic temperature; b, dust; c, sodium; d, δ¹⁸O_{atm}; e, CO₂; and f, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

• Macmillan Magazines Ltd (t) = Statters yot 3963 + 10 + 3999 | www.nature.com

 $f_0 = 0 j^{-1}$ $f_5 = 1,932 j^{-1}$ $f_6 = 2 j^{-1}$ $f_3 = 1,003 j^{-1}$

variation journalière (période 24h environ)

accuracy of GT4 is always better than ± 15 kyr, better at of the record, and better than ± 5 kyr for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral **Construction Construction Construction**

• Macmillan Magazines Ltd (t) = Statters your 3963 + 10 + 3999 | www.nature.com

 $f_0 = 0 j^{-1}$ $f_5 = 1,932 j^{-1}$ $f_6 = 2 j^{-1}$ $f_3 = 1,003 j^{-1}$

variation journalière (période 24h environ)

accuracy of GT4 is always better than \pm 15 kyr, better st of the record, and better than $\pm 5 \, \text{kyr}$ for the last e is quite adequate for the discussions here which tic information contained in the Vostok records

$$s(t) = \sum_{i} A_i \cos\left(2\pi f_i t + \varphi_i\right)$$

Figure 4 Spectral properties of the Vostok time series. Frequency distribution (in cycles yr⁻¹) of the normalized variance power spectrum (arbitrary units). Spectral Canalyse Swas the sing the Blackman-Tukey method (calculations were performed with the Analyseries software⁴⁷): **a**, isotopic temperature; **b**, dust; **c**, sodium; **d**, $\delta^{18}O_{atm}$; **e**, CO₂; and **f**, CH₄. Vertical lines correspond to periodicities of 100, 41, 23 and 19 kyr.

• Macmillan Magazines Ltd (t) = Statters your 3963 + 10 + 3999 + Swaw.nature.com

 $f_0 = 0 j^{-1}$ $f_5 = 1,932 j^{-1}$ $f_6 = 2 j^{-1}$ $f_3 = 1,003 j^{-1}$ $f_4 = 1,896 j^{-1}$

variation avec période de 1 mois environ

Interprétation du spectre

Influence de la durée d'enregistrement

Résolution assez faible ...

Mais des informations remarquables

- 23 000 ans: précession de l'axe de rotation de la Terre
- 41 000 ans: variation de l'inclinaison de l'axe de rotation de la Terre
- 100 000 ans: variation de l'excentricité de l'orbite

Bonus : signal mystère

Signal acoustique

Bonus : signal mystère

Signal acoustique

Bonus : signal mystère

Signal acoustique : ronronnement !

